Package: Dire 2.2.0

Paul Bailey

Dire: Linear Regressions with a Latent Outcome Variable

Fit latent variable linear models, estimating score distributions for groups of people, following Cohen and Jiang (1999) <doi:10.2307/2669917>. In this model, a latent distribution is conditional on students item response, item characteristics, and conditioning variables the user includes. This latent trait is then integrated out. This software is intended to fit the same models as the existing software 'AM' <https://am.air.org/>. As of version 2, also allows the user to draw plausible values.

Authors:Emmanuel Sikali [pdr], Paul Bailey [aut, cre], Eric Buehler [aut], Sun-joo Lee [aut], Harold Doran [aut], Blue Webb [ctb], Claire Kelley [ctb]

Dire_2.2.0.tar.gz
Dire_2.2.0.zip(r-4.5)Dire_2.2.0.zip(r-4.4)Dire_2.2.0.zip(r-4.3)
Dire_2.2.0.tgz(r-4.4-x86_64)Dire_2.2.0.tgz(r-4.4-arm64)Dire_2.2.0.tgz(r-4.3-x86_64)Dire_2.2.0.tgz(r-4.3-arm64)
Dire_2.2.0.tar.gz(r-4.5-noble)Dire_2.2.0.tar.gz(r-4.4-noble)
Dire_2.2.0.tgz(r-4.4-emscripten)Dire_2.2.0.tgz(r-4.3-emscripten)
Dire.pdf |Dire.html
Dire/json (API)
NEWS

# Install 'Dire' in R:
install.packages('Dire', repos = c('https://american-institutes-for-research.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/american-institutes-for-research/dire/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

4.48 score 1 stars 2 packages 3 scripts 524 downloads 1 mentions 2 exports 36 dependencies

Last updated 1 years agofrom:2dbe7e4dc0. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-win-x86_64WARNINGOct 26 2024
R-4.5-linux-x86_64WARNINGOct 26 2024
R-4.4-win-x86_64WARNINGOct 26 2024
R-4.4-mac-x86_64WARNINGOct 26 2024
R-4.4-mac-aarch64WARNINGOct 26 2024
R-4.3-win-x86_64WARNINGOct 26 2024
R-4.3-mac-x86_64WARNINGOct 26 2024
R-4.3-mac-aarch64WARNINGOct 26 2024

Exports:drawPVsmml

Dependencies:bitbit64clicliprcodetoolscpp11crayonfansiforcatsforeachgluehavenhmsiteratorslatticelbfgslifecyclemagrittrMASSMatrixpillarpkgconfigprettyunitsprogressR6RcppRcppArmadilloreadrrlangtibbletidyselecttzdbutf8vctrsvroomwithr

Weighted Marginal Maximum Likelihood Regression Estimation

Rendered fromMML.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2023-06-16
Started: 2021-03-19

Readme and manuals

Help Manual

Help pageTopics
Draw plausible values (PVs) from an mml fitdrawPVs drawPVs.mmlCompositeMeans drawPVs.mmlMeans drawPVs.summary.mmlMeans
Marginal Maximum Likelihood Estimation of Linear Modelsmml